Viscoelastic effect on acoustic band gaps in polymer-fluid composites

نویسندگان

  • B Merheb
  • P A Deymier
  • K Muralidharan
  • J Bucay
  • M Jain
چکیده

In this paper, we present a theoretical analysis of the propagation of acoustic waves through elastic and viscoelastic two-dimensional phononic crystal structures. Numerical calculations of transmission spectra are conducted by extending the finite-difference-time-domain method to account for linear viscoelastic materials with time-dependent moduli. We study a phononic crystal constituted of a square array of cylindrical air inclusions in a solid viscoelastic matrix. The elastic properties of the solid are those of a silicone rubber. This system exhibits very wide band gaps in its transmission spectrum that extend to frequencies in the audible range of the spectrum. These gaps are characteristic of fluid matrix/air inclusion systems and result from the very large contrast between the longitudinal and transverse speeds of sound in rubber. By treating the matrix as a viscoelastic medium within the standard linear solid (SLS) model, we demonstrate that viscoelasticity impacts the transmission properties of the rubber/air phononic crystal not only by attenuating the transmitted acoustic waves but also by shifting the passing bands frequencies toward lower values. The ranges of frequencies exhibiting attenuation or frequency shift are determined by the value of the relaxation time in the SLS model. We show that viscoelasticity can be used to decrease the frequency of pass bands (and consequently stop bands) in viscoelastic/air phononic crystals. (Some figures in this article are in colour only in the electronic version) 4 Author to whom any correspondence should be addressed. 5 Present addresses: Institute for Computational Engineering and Science, University of Texas, Austin, TX 78712, USA and Department of Physics, University of California, Berkeley, CA 94720, USA. 0965-0393/09/075013+13$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1 Modelling Simul. Mater. Sci. Eng. 17 (2009) 075013 B Merheb et al

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Elasticity Parameter on Viscoelastic Fluid in Pipe Flow Using Extended Pom-Pom Model

In this study prediction of the steady-state flow of branched polymer melts in pipe geometry with finite volume method is presented. Our analysis in this study revealed that;for normal-stress tqq , the XPP model can predict this tensor unlike the other viscoelastic models such as PTT or Gieskus which can not predict tqq...

متن کامل

Study of the Influence of Multiple Step Creep/Creep-Recovery Loading on the Nonlinear Viscoelastic Response of Carbon Fiber Polymer Matrix Composites

In the current study the nonlinear viscoelastic response of a polymer matrix composite under multiple creep/creep-recovery loading is presented. The influence of creep/creep-recovery multiple step loading in the overall strain response both viscoelastic and viscoplastic is examined and an attempt for modeling this behaviour is attempted. An increase in the parameters of nonlinearity is observed...

متن کامل

Parametric study of a viscoelastic RANS turbulence model in the fully developed channel flow

One of the newest of viscoelastic RANS turbulence models for drag reducing channel flow with polymer additives is studied in different flow and rheological properties. In this model, finitely extensible nonlinear elastic-Peterlin (FENE-P) constitutive model is used to describe the viscoelastic effect of polymer solution and turbulence model is developed in the k-ϵ-(ν^2 ) ̅-f framework. The geome...

متن کامل

Zn–Al-based metal–matrix composites with high stiffness and high viscoelastic damping

A maximal product of stiffness and viscoelastic damping (E tan d), a figure of merit for damping layers, is desirable for structural damping applications. Particulate-reinforced metal–matrix composites were prepared by ultrasonic agitation of the melt and composed of the zinc–aluminum (ZnAl) alloy Zn80Al20 (in wt%) as the lossy matrix and SiC or BaTiO3 as the particulate reinforcements. ZnAl–Si...

متن کامل

Thermal Convection in a (Kuvshiniski-type) Viscoelastic Rotating Fluid in the Presence of Magnetic Field through Porous Medium (TECHNICAL NOTE)

  The effect of magnetic field on an incompressible (Kuvshiniski-Type) viscoelastic rotating fluid heated from below in porous medium is considered. For the case of stationary convection, magnetic field and medium permeability have both stabilizing and destabilizing effect on the thermal convection under some conditions whereas rotation has a stabilizing effect on the thermal convection. In the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009